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A study of craze deformation in 
the fatigue fracture of 
polyrnethylmethacrylate 

Y. I M A I , *  I. M. W A R D  
Department of Physics, University of Leeds, Leeds, UK 

Continuous measurements of the craze contour have been undertaken for fatigue 
crack propagation in polymethylmethacrylate. The craze contour was determined by 
an interference fringe method, using equipment specially constructed for con- 
tinuous load cycling, mounted on the stage of an optical microscope. It was found 
that there was a very great variation in the size of the craze for a fixed loading 
programme, although the crack growth rate showed a good correlation with the 
applied stress intensity range. A general result is that the craze length in fatigue 
was found to be greater than that for continuous crack propagation under simple 
fracture. This result suggested that it would be instructive to examine an extension 
of the Dugdale line-zone model, where the craze stress is not assumed to be con- 
stant along the length of the craze. It is shown that this modified line-zone model 
can provide some understanding of the observed results for craze deformation in 
fatigue. 

1. In troduct ion  
It is well known that the brittle fracture of glassy 
polymers is usually associated with the forma- 
tion and fracture of a craze zone at the crack tip. 
The size and geometry of  the craze relate to the 
state of stress at the crack tip, and hence provide 
information regarding the fracture mechanism. 
In a number of glassy polymers the craze zone 
can be conveniently studied by observing the 
optical interference fringes in reflected light 
[1-9]. These fringes arise due to the difference in 
refractive indices between bulk polymer and the 
craze, and can be used to provide a direct deter- 
mination of the craze profile. 

It has been found that the craze geometry can 
be described to a reasonable approximation, and 
sometimes a very good approximation, by the 
Dugdale plastic zone model [10]. This assumes a 
line-zone of yielding ahead of the crack tip and 
a constant yield stress, or "craze stress" in the 
case of a glassy polymer, where the craze stress 

is not identical to the bulk yield stress. Although 
there have been some doubts [6] regarding the 
applicability of the Dugdale zone model, it has 
proved a valuable starting point for the studies 
of brittle fracture in several glassy polymers 
[1, 2], and has also been applied to fatigue 
fracture [3, 4] with some success. However, in the 
case of discontinuous fatigue crack growth, 
which has been studied recently [8, 11], there are 
indications that the craze and crack growth may 
not be explained adequately by the simple 
Dugdale model. 

In this paper, results are presented for the 
continuous monitoring of  the craze geometry 
at the crack tip during loading and unloading 
of polymethylmethacrylate (PMMA) in low- 
frequency fatigue fracture. Examination of  the 
craze shapes observed has led us to elaborate the 
simple Dugdale line-zone model, and to consider 
the effect of  a stress distribution along the craze. 
In addition, we have considered the importance 
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of the initial thickness of the bulk material which 
forms the craze. 

2. Experimental procedure 
2.1. Crack growth rate measurement 
A special loading device for fatigue loading was 
designed and fixed on the X - Y  stage of  the 
microscope as shown in Fig. 1. The load is 
applied by a cam-lever system A. The shape of 
the cam determines the loading waveform, and 
the position of  the cam along the lever gives the 
displacement. The load is therefore determined 
by the displacement, and by the stiffness of  the 
load cell and the specimen. The applied load is 
measured to an accuracy of  _ 0.1 N by a leaf- 
spring type of load cell B which is installed 
between the specimen lower grip and the lever. 
The cam is driven by a synchronous electric 
motor C to obtain a precise loading rate. The 
crack length is easily measured with the micro- 
scope stage scale by maintaining the crack front 
in the centre of  the field of  view. The material 
used was commercial-grade PMMA manu.. 

a ,~ 55 L_ad J 
Figure 2 Double cantilever beam type specimen. Dimensions 
in millimetres. Crack length a is measured as shown. 

factured by ICI Ltd under the trade name 
Perspex. 

Double cantilever beam specimens as shown 
in Fig. 2 were used. In order to achieve flat and 
straight front cracks, side grooves of depth 2 mm 
were machined on the specimen. The effective 
thickness B e derived from the compliance 
calibration for several specimens was shown to 
be given in terms of total thickness B and net 
thickness Bn at a grooved section as 

B e -~- (BBn) �89 

to a very good approximation. The applied 
stress intensity was calculated from the formula 
for the double cantilever beam [12] 

H,B-~e + 0.7 

where P is the applied load, H half the specimen 
height, and a the crack length measured from the 
loading line, as shown in Fig. 2. 

The initial crack was introduced by tapping a 
razor blade into the machined crack, but no 
measurements were undertaken until the fatigue 
crack had grown by more than 5 mm. Through- 
out the experiment, Kmi . was kept less than 10% 
ofKmax. The cyclic rate 0.1 Hz was used for crack 
growth measurement. 

Three different loading waveforms were used. 
These are shown in Fig. 3 and have been 
designated symmetric triangular, assymmetric 
triangular and trapezoidal. 

Figure 1 Fatigue loading device installed on a microscope 
stage. (A) cam lever system, (B) load cell, (C) motor. 

2.2. Craze contour measurement 
The usual optical interference method was 
employed to measure the craze contourl In order 
to record the successive variation of contour 
during loading, the cyclic rate was reduced to 
0.025 Hz. After at least 011 mm crack growth 
under the same loading conditions, optical inter- 
ference patterns from the craze were l~hoto- 
graphed in several successive cycles. These 
patterns were traced by a microdensitometer 
giving a final magnification in craze length of  
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Figure 3 Loading waveforms: (a) 
symmetric triangular, (b)asym- 
metric triangular, (c) trapezoidal 
shape. 

6250. It is estimated that the craze length could 
be determined to + 0.5 #m. 

The refractive index of craze # was assumed to 
relate to the extension ratio )v as 

# + 2 = \ ; F U J i  

where #0 is the refractive index of  bulk material 
(=  1.49) and 2 is the actual strain of the craze 
fibril from the bulk state [2]. Assuming that 2 
varies linearly with load from a relaxed value of 
1.5 at the minimum load to 4.5 at the maximum 
load, the refractive index # at any load level can 
then be obtained. 

3. Results and discussion 
3.1. Crack growth rate 
Crack growth rate measurements were under- 
taken for a range of AK from about 0.4 to 
0 . 9 M N m  3/2. Within the fairly considerable 
scatter of  the results, no significant differences 
were observed between growth rates for the dif- 
ferent loading waveforms. Fig. 4 shows the 
results for the symmetric triangular waveform, 
on a log-log plot. As anticipated from previous 
work, for example by Hertzberg and co-workers 
[11] and from previous studies in our labor- 
atories [13], there is an approximately linear 
relationship on this plot between crack growth 
rate and AK. Closer examination does, however, 
reveal a minor transition at about 0.7 MN m 3/2. 
Up to this AK level the crack front remains fairly 
straight, and clear interference patterns can be 
observed. However, at 0 . 7 M N m  -3/2 it can be 
seen that some part of the crack front becomes 
rough, and this rough region then spreads across 
the crack front as the crack grows. In this region 
the crack growth rate remains approximately 
constant as AK increases. With further increase 
in AK the crack growth rate again increases with 
AK at about the same rate as for low AK. At the 
same time the crack front remains quite rough. 
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This transition from smooth-surface crack 
growth to rough-surface crack growth may 
correspond to the appearance of  plateaux in 
previous plots [9] of  growth rate against AK. 

The rough-surface crack growth mode c a n  

only be changed to a smooth-surface mode by 
reducing AK very substantially, or sometimes by 
increasing AK to the point where the crack 
produces in each loading cycle an entirely new 
craze beyond the rough crack growth region. It 
should perhaps be pointed out that these rough- 
and smooth-surface crack growth modes were 
also observed in the case of  fracture [1]. 
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Figure 4 Crack growth rate against stress intensity range for 
PMMA. Symmetric triangular waveform, 0.1 Hz. Full circles 
and open circles show data for two specimens tested under 
identical conditions. 
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3.2. Optical examinat ion of crazes: 
general features 

Photographs were obtained of  the craze during 
loading and unloading, for a number of levels of 
AK. A typical set of  results is shown in Fig. 5. It 
can be seen that the eraze dimensions stabilize to 
a standard shape, varying between the lower 
bound for Kmin and the upper bound for Kma • 
The actual overall shape approximates to that of 
a Dugdale plastic zone, as noted extensively for 
fracture in previous work, and more recently for 
fatigue [13]. 
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Figure 5 Measured craze contours  at various loading levels 
during one complete fatigue cycle. Symmetric tr iangular  
waveform, 0.025 Hz: (a) K,na, = 0.44 M N  m 3i2, (b) K,,~x = 
0.47 M N  m -3'2, (c) K,~ax = 0.69 M N  m -3/2 . 

There are, however, two features of  the crazes 
in fatigue which we consider are importantly 
different from those observed in fracture. 
Firstly, very large differences in craze length 
were observed for identical loading conditions, 
i.e. AK and loading waveform. The craze con- 
tours were always very similar, and the maxi- 
mum displacement at the crack tip also varied so 
that the crazes were of different overall size. 
Secondly, the fatigue crazes always appeared to 
be much larger than those observed for con- 
tinuous crack growth. These results, obtained in 

situ during fatigue cycling, confirm completely 
the conclusions drawn in previous work [13] 
based on measurements on crazes cut from 
specimens after the cessation of fatigue loading. 

It is of interest to examine some typical results 
for the fringe patterns which illustrate these two 
features, and which serve to introduce the 
approach we have adopted to the interpretation 
of fatigue crazes. In Figs. 5a and b, two craze 
contours are presented for loading and unload- 
ing conditions at comparatively low Kmax- 
Although the Kmax values are very close, the 
craze length varies from 20 to 40 #m and there is 
a similar change in the opening displacement at 
the craze tip, as indicated by the fringe order. It 
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Figure 6 Variation of  craze thickness at the crack tip and at the middle point  of  the craze length as a function of  the applied 
stress intensity. Symmetric tr iangular  waveform, 0.025 Hz: (a) •K = 0.43 M N  m -3/2, craze length R = 19 #m; (b) AK = 
0.68 M N  m -3/2, craze length R = 19 #m. 

is clear that the extension of the craze on loading 
is not uniform over the length of the craze and, 
especially in the case of  the longer craze, there 
would appear to be very little extension of the 
craze in the region near the craze tip. This result 
is dissimilar from the situation for the craze at 
the crack tip in continuous fracture [1] where the 
loaded and unloaded craze were of  very similar 
shape, suggesting a uniform extension of  
material along the craze as the craze is loaded 
and a uniform contraction (i.e. relaxation) of  
material when the craze is unloaded. It  should 
perhaps be emphasized that there was no 
evidence of discontinuous crack growth in these 
experiments, and it appeared that crack growth 
occurred during every cycle. Fig. 5c shows the 
results for a higher loading level, and in this case 
there is a more uniform extension of the craze on 
loading, although again it appears that the 
deformation is least near the craze tip. Another 
feature which these results also reveal is the 
hysteresis shown by the difference between the 
craze extensions on loading and unloading. 

We have concluded from these results that in 
fatigue, as distinct from continuous crack 
growth in fracture, the stress (the so-called craze 
stress) is not constant along the length of the 
craze. Moreover,  there can be a substantial part  
of  the craze near the craze tip where the stress 
does not reach a value corresponding to the 
craze stress, i.e. the stress for crazing equivalent 

to the yield stress of  the bulk polymer. There can 
also be hysteresis effects similar to those 
observed for the loading and unloading of an 
isolated craze by Kambour  [14]. Indeed, the 
material near the craze tip is not being stressed 
to the point at which further uncrazed material 
will be drawn into the craze. 

3.3.  Craze  c o n t o u r s  
Craze geometry was measured only for a smooth 
growth mode. In this experiment the geometry 
itself does not seem to depend very much on AK 
or on the waveform. At the same AK repetition, 
the craze length and opening displacement vary 
over a wide range in different specimens as 
shown in Table I, and the geometry varies at 
different crack lengths of  even the same speci- 
men. When a crack has a curved front, say con- 
vex forward, the craze geometry may vary along 
the crack tip line, being short at the centre but 
long at the sides, while the crack grows keeps its 
craze front geometry almost the same. This 
implies also that the craze size does not depend 
very much on the growth rate, because locally 
different craze sizes give the same growth rate. 

Fig. 6 shows the deformation of the craze 
fibrils at the crack tip and at the middle of  the 
craze length, as a function of  applied K during a 
whole cycle. As long as AK remains small, the 
crazes deform almost elastically as seen in the 
case o f A K  = 0.43 M N m  -3/2, but with increasing 
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TABLE I Craze contour measurement 

Stress intensity (MNm 3/2) 

Kmax Kmin 

Craze length 
R (#m) 

Craze contour (#m) 

(~b)max (6b)min 

Calculated original 
craze thickness (nm) 

g~ gb 

0.44 0.01 40 
0.47 0.04 19 
0.52 0.02 26 
0.68 0.02 25 
0.69 0.01 19 
0.84 0.03 29 
0.84 0.02 30 

0.87 0.45 80 214 
0.68 0.31 37 162 
0.81 0.37 60 178 
0.85 0.35 58 165 
0.86 0.33 45 145 
1.11" 0.48 73 205 
1.07" 0.51 75 187 

*For moving crazes. 

AK the deformation pattern begins to show 
hysteresis effects, as seen in the case of  AK -- 
0.68 M N m  -3/2. This hysteresis behaviour of  the 
crazes is quite similar to that observed in the 
isolated craze in PC by K a m b o u r  [14]. 

3.4. Craze deformation 
We consider it instructive at this stage to intro- 
duce a modified Dugdale line-zone model for the 
craze, which takes into account the features indi- 
cated by the craze shape results. The Dugdale 
zone model can be considered as introducing a 
plastic zone of the shortest length required to 
cancel the stress singularity, with a constant high 
stress along the length of  the zone. This can be 
regarded as the limiting case, and it gives the 
shortest craze for a given stress intensity level. 
We will therefore develop a model in which the 
stress is not constant along the craze. We also 
consider that it is important  to take into account 
the finite thickness of  the thin layer of  bulk 
material f rom which the craze originates. 

In view of the observation of considerable 
variations in the length of  the craze for a given 
applied stress intensity factor, it would appear  
that there could be several possible craze stress 
distributions which would be able to cancel the 
stress singularity at the craze tip. The Dugdale 
model can be considered to be the limiting case 
which gives the shortest craze for a given stress 
intensity level, as shown in Fig. 7. However, as 
long as the same craze size is maintained during 
the crack growth, all the material along the craze 
must reach the craze stress at least once during 
the growth period. Since the craze length is 
usually longer than in the Dugdale model, the 
craze stress cannot  act over the whole length of  
the craze at the same time. 

To illustrate this argument, a simple model of  

craze deformation will be introduced. Assume 
that an elastic crack, accompanying a craze of  
length R, is subjected to stress intensity K and 
that the normal stress a(r) at a distance r f rom 
the crack tip, acts on the matrix boundary as 
shown schematically in Fig. 8; it is assumed here 
that no shear stress acts along the craze, because 
the craze fibril has almost no resistance to lateral 
forces. As shown in the Appendix, the elastic 
displacement of  the craze boundary may be 
expressed as 

v(r) = 2 I ~E--- ~ (2~r)}K 

R a ( s ) s l  + r~ ds-] 
f0 log - ; - - - - 7  j (1) r'l 

J I ! J 

I'E'(, A., ~2 40- 0 ' ~ :  8 "O'c" 
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Figure 7 Measured craze length against Kma x for symmetric 
triangular (O) asymmetric triangular (a) and trapezoidal 
waveform (n) at 0.025Hz. Full lines show predicted re- 
lationship based on the Dugdale zone model with a constant 
craze stress. 
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Figure 8 Craze stress acting on  a craze boundary  a(r) and a 
craze contour  6(r). Only the upper  half  is illustrated. 

where E* is the reduced Young's modulus; 
E* = E in  plane stress and E/(1 - v 2) in plane 
strain where v is Poisson's ratio. 

To cancel the stress or displacement singu- 
larity at the craze tip, K must be related to the 
stress distribution by 

f. K = '~ s' ds (2) 

The measured craze contour 6(r) is the sum of 
the above elastic displacement and the original 
thickness of the bulk layer from which the craze 
was produced. Adding the original thickness 
g(r) to Equation 1 we have 

6(r) = g(r) + ~E----g 

s �89 F { 
[ or(s) ds (3) 

+ 
- log  is { _ r-----~q j 

In addition, the craze fibrils which exist inside 
the craze contour are extended from their orig- 
inal length g(r) to 5(r) under the stress a(r) acting 
on the ends: 

~(r) = ( ~ - ~ +  ~ r+  l )  g(r) (4) 

where it is assumed that the craze fibril extends 
elastically from its relaxed strain ~, with the 
modulus F as shown in Fig. 9. By eliminating 
g(r) from the above equations, we obtain the 
relation between the craze contour and the stress 
distribution as 

&(r) -- 2 (ff(r)-4- F(sr + l ' ) f ~ [ 2 ( ; ) {  
=E* \ a(r) + Fe~ 

s { r ~ 
1 o'(s) ds  (5) 

+ 
--  log  
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Figure 9 Stress-strain relation of  already-extended craze 
fibrils. 

For simplicity we assume the bilinear stress 
distribution shown in Fig. 10, which gives 

2r R 
o-(r) = cr 0 + ~ ( a ~ - a 0 )  0 ~ < r ~ -  

= ~a+-~ r -  ( ~ b - a , )  ~<~r .<.R 

We fit Equation 5 at only two points, r = R/2 
and R. The following equations are then 
obtained for o'0, ~a and o-b: 

]a ----" 

~b ~- 

){: 2 R  (.ffa +__ Fa@ra nt- 1) K 
~E* \ G a AI- Fa(Era ) 

- o - a [ ~ +  zl-ln(l +2�89 

) 
- �89 In (1 + 2{)~ 

+ + 

~E* \ ab -F Fb@rb ) 

x t ~ K R [ 3 ( 2 ) { - l n ( 1  + 2�89 

--  o-a [2 --  2 �89 In (1 + 2�89 

I '  1} - � 8 9  1 + 2 ~ l n ( 1  + 2 �89 ) 

a0 = �88 - 2(2 { -  1)aa 

- {(2 -- 2{)crb 

where the suffices 0, a and b correspond to the 
points r = 0, R/2 and R respectively. 

3.5. The s tress  field a long  the  craze 
By fitting the measured craze geometry to the 
above equation, the bilinear stress distribution 
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Figure 10 Bilinear distribution of the craze stress and the 
measured craze contour. 0, a and b refer to the points at the 
craze tip, at the middle, and at the crack tip respectively. 

a long  the craze  b o u n d a r y  was calculated.  I t  was 
found  that  a c o m b i n a t i o n  o f  F -- 60 M P a  and  
e~ = 2 gave the best  fit to the craze  d e f o r m a t i o n  
behaviour .  A value o f  Young ' s  modu lus  E = 
2 . 8 G P a  and  Po isson ' s  ra t io  v = 0.3 were also 
used. Fig.  11 shows the ca lcula ted  stress distr i-  
bu t ion  a long  the craze at  the m a x i m u m  load.  I t  
can be seen tha t  the stress d i s t r ibu t ion  is some-  
wha t  uneven,  with the highest  stresses at  the 
c rack  tip. Even at  the same stress in tensi ty  level, 
the longer  the craze,  the lower  the stress falls a t  
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Figure 12 Peak stress attained at the crack tip against 
applied maximum stress intensity Kma x. 

po in ts  far  f rom the crack  tip. The  peak  stress at  
the crack  tip ab corre la tes  well with the app l ied  
Kin, ~ independen t  o f  the craze length as shown in 
Fig. 12, a resul t  which is s imilar  to tha t  o f  the 
s imple D ugda l e  mode l  [10]. 

Table  ! also shows the ca lcu la ted  or ig inal  
thickness o f  crazes at  the crack  t ip gb and  at  the 
middle  o f  the craze g~. The  or ig inal  thickness  
does  no t  depend  on the app l ied  K level, bu t  
corre la tes  wi th  the craze length as shown in 
Fig.  13. This  implies  tha t  the craze grows longer  
and  th icker  by  consuming  more  or iginal  bu lk  
ma te r i a l  which turns  in to  craze fibrils .  Conse-  
quent ly  the s t ra in  o f  the craze fibrils, especial ly 
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Figure 11 Calculated craze stress distributions along crazes Figure 13 Calculated original thickness of craze against 
of various lengths at maximum stress intensities, craze length. 
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at the crack tip, remains almost the same for a 
given stress intensity level regardless of  craze 
size, and the stress state achieved is proportional 
to K. Unless the applied stress intensity level is 
very high, the original thickness is thought not 
to change very much during a fatigue cycle, and 
hence it describes the whole deformation behav- 
iour of the craze contour. The solid lines in 
Fig. 6 show the predicted deformation, which 
corresponds well with the experimental data. 
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3.6. Craze  an d  c rack  g r o w t h  
m e c h a n i s m s  

The original craze thickness also determines the 
stress field around the craze. Fig. 14 shows how 
the stress changes with g, and gb at a constant 
load level K/GR �89 = 0.1. The stress states are 
illustrated in Fig. 15 for exaggerated combi- 
nations of  go and gb, although the actual situ- 
ation would involve much narrower ranges of go 
and gb. While gb/R remains small, the stress at 
the crack tip becomes highest as shown in 
Fig. 15a. In this case, at some load level the 
matrix wall at this point will be drawn into craze 
fibrils making gb thicker, or possibly craze 
fibrils at this point may break resulting in crack 
growth. In the former case the original thick- 
ness of the craze increases, to give (say) 
103gb/R = 10, and stress redistribution occurs to 
produce the situation represented in Fig. 15b 
where the stress at the middle point of the craze 
becomes the highest. An increase ofg  a may then 
occur and lead to the stress state shown in 
Fig. 15c, where the craze tip is subjected to the 
highest stress. The craze will then grow in length, 
and finally the situation will return to that of 
Fig. 15a due to the decrease ofga/R and gb/R. It 
is considered that the above sequence of  events 
may be completed within one fatigue cycle or 
during several cycles, depending on the applied 
K level. 

It is also to be noted that newly fibrillated 
crazes may exhibit a large hysteresis in their 
cyclic stress-strain behaviour, in the same 
manner as the completely relaxed craze [14]. The 
stress state in the re-loading period is therefore 
no longer the same as that in the previous un- 
loading period at the same K level. This explains 
why the fatigue crack grows differently from a 
crack propagating under continuous loading. 
When the applied K is decreased to a level where 

Figure 15 Typical examples of the craze stress distribution 
with changing original thickness of the craze: (a) 
103ga/R = 1, 103gb/R = 6; (b) 103go/R = 1, 103gb/R = 
10; (c) 103 ga/R = 5, 103 gb/R = 10, 
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no additional fibrillation occurs on the craze 
boundary,  the craze deformation becomes 
elastic and load cycling cannot cause any craze 
growth and crack growth. This will correspond 
t o  the lower bound of  crack growth. 

4. Conclusions 
l. Two fatigue fracture modes are observed: 

smooth fracture surfaces and rough surfaces. 
The appearance of  a plateau in the plot of  crack 
growth rate against AK may be caused by the 
transition from the former mode to the latter. 
The latter gives slower growth rate than the 
former. 

2. Very great scatter in craze length and craze 
thickness are observed at the maximum load. 
Hence the simple Dugdale model is not adequate 
to explain craze deformation during the fatigue 
cycle. By taking into account the craze fibril 
deformation as well as the deformation of the 
craze contour, a simple craze deformation model 
was constructed which gives a good fit to the 
experimentally observed deformation behav- 
iour. 

3. The large variation in craze size is attri- 
buted to variation of  the original craze thick- 
ness; the original thickness grows with craze 
length. However, no matter  how long the craze 
is, calculated stresses at the crack tip become 
almost the same at the same K. This may be the 
reason why no cyclic rate dependence, and no 
waveform dependence, are observed in the crack 
growth rate. 

Appendix 
When a pair of  concentrated forces P are applied 
at the edge of  a semi-infinite crack as shown in 
Fig. A1, the Westergaard stress function is given 
by 

x 

Figure A1 A pair of concentrated forces acting at the edges 
of a semi-infinite crack. 

f 
{L ; 

Figure A2 Distributed forces acting along the edges of a 
semi-infinite crack. 

Z - ~(z + c) P 

where z = x + iy. From this the crack edge 
displacement in the y direction is calculated as 

c �89 + r ~ 2 P log --v-'---7. 
v - ~E* I c ~ -  r~[ 

and the stress intensity factor for this situation is 

\reel 

In the case of  c ,> r, the log term can be 
approximated to 

log ~ ~- 2 
[c 2 - r2 I 

and the displacement is expressed using K as 

2 
v = ~E,(2rcr){K 

On the other hand, when the forces are distri- 
buted along some distance R as in Fig. A2 then 

2 fe s ~ + r ~ 
v - 7rE* J0 f(s)  log ds 

and 

wheref(s)  is a distribution function of the force 
along the crack edge. 
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